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Accident (1/2)
• Design Basis Accident: DBA
• Assumption of simultaneous double ended break

• Installation of Engineered Safety Features
Emergency Core Cooling System: ECCS
Accumulated Pressurized Coolant Injection 
System: APCI
Low Pressure Coolant Injection System: LPCI
High Pressure Coolant Injection System: HPCI
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Accident (2/2)

• Computer codes are used to evaluate 
temperature behavior of fuel bundle.

• Computer codes should be validated.
• Blow-down and ECC injection tests have 

been conducted using mock-ups.
• RELAP5/mod3 and TRAC code are 

developed and validated.
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ECCS
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Blow-down experiment
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６MW ATR Safety Experimental Facility
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Water level behavior after a main steam 
pipe break
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Simulated fuel bundle
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Thermocouple positions
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Fig.  8　Thermocouple positions on high power heater rods
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Cladding temperature measured in a same cross 
section of heater bundle
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Fig. 14  Experimental cladding temperature  for 150 mm
downcomer break
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Calculation model of pipe break experiment
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Improvement of blow-down analysis by 
applying statistical method

H. Mochizuki, A Validation of ATR LOCA Thermal-hydraulic Code with a Statistical Approach, Journal of Nuclear Science and Technology, 
37, 8 (2000), pp.697-709.
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Application of stochastic method to FBR
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Severe accident
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Heat transfer of melted fuel to material
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Heat transfer between melted jet and 
materials
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Fuel melt experiment using BTF in Canada
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Fuel melt experiment using CABRI
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Source term analysis codes
General 
codes

NRC codes ORIGEN-2, MARCH-2, MERGE, 
CORSOR, TRAP-MELT, CORCON, 
VANESA, NAUA-4, SPARC, ICEDF

IDCOR codes MAAP, FPRAT, RETAIN

NRC code (2nd Gen.) MELCOR

Precise 
analysis 
codes

Core melt SCDAP, ELOCA, MELPROG, SIMMER

Debris-concrete reaction CORCON

Hydrogen burning HECTOR, CSQ Sandia, HMS BURN

FP discharge FASTGRASS, VICTORIA

FP behavior in heat 
transport system

TRAP-MELT

FP discharge during debris-
concrete reaction

VANESA

FP behavior in containment CONTAIN, NAUA, QUICK, MAROS, 
CORRAL-II
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CONATIN code
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Fluid- structure interaction analysis during 
hydrogen detonation
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Analysis of Chernobyl Accident
- Investigation of Root Cause -

H. Mochizuki, Analysis of the Chernobyl Accident from 1:19:00 to the First Power Excursion, 
Nuclear Engineering and Design, 237, (2007), pp.300-307.
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Schematic of Chernobyl NPP
1. Core
2. Fuel channels
3. Outlet pipes
4. Drum separator
5. Steam header
6. Downcomers
7. MCP
8. Distribution 
group headers

9. Inlet pipes
10. Fuel failure  
detection 
equipment
11. Top shield
12. Side shield
13. Bottom shield
14. Spent fuel 
storage
15. Fuel reload 
machine
16. Crane

Electrical power 1,000 MW
Thermal power 3,200 MW
Coolant flow rate 37,500 t/h
Steam flow rate 5,400 t/h (Turbine)
Steam flow rate            400 t/h (Reheater) 
Pressure in DS                 7 MPa
Inlet coolant temp.       270 0C
Outlet coolant temp.    284 0C
Fuel 1.8%UO2
Number of fuel channels 1,693
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Elevation Plan
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Above the Core of Ignarina NPP
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Core and Re-fueling Machine
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Control Room
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Configuration of inlet valve

1

2

3 4
1. Isolation and flow control valve
2．Ball-type flow meter 
3．Inlet pipe
4．Distribution group header 
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Drum Separator
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Configuration of Fuel Channnel
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Heat Removal by Moderation

Pressure tube

Graphite
blocks

Graphite ring

Gap of 1.5mm
Coolant

φ88mm
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φ91mm Heat generated in graphite 
blocks is removed by coolant

Maximum graphite 
temperature is 720℃
at rated power
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RBMK & VVER
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Objective of the Experiment

• Power generation after the reactor scram 
for several tens of seconds in order to 
supply power to main components.

• There is enough amount of vapor in drum 
separators to generate electricity.

• But they closed the isolation valve.
• They tried to generate power by the inertia 

of the turbine system.
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Report in Dec. 1986
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Time Chart Presented by USSR
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• T. Wakabayashi, H. Mochizuki, et al., Analysis of the Chernobyl Reactor Accident (I) Nuclear and 

Thermal Hydraulic Characteristics and Follow-up Calculation of the Accident, J. Atomic Energy 
Society of Japan, 28, 12 (1986), pp.1153-1164.

• T. Wakabayashi, H. Mochizuki, et al., Analysis of the Chernobyl Reactor Accident (I) Nuclear and 
Thermal Hydraulic Characteristics and Follow-up Calculation of the Accident, Nuclear 
Engineering and Design, 103, (1987), pp.151-164.

• Requirement from the Nuclear Safety Committee in Japan

Feed water

Water level

Drum pressure

Recirculation flow rate

Neutron flux

Result in the Past Analysis (1/2)
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Result in the Past Analysis (2/2)

Power at 200 MW

Power at 48,000 MW

Power just before the 
accident was twice as 
large as the report.  
Why???

Result of FATRAC
code is transferred, and initial steady calculation was conducted.

Timing of peak 
was different. 
Why???

？？？
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Possible Trigger of the Accident

• Positive scram due to flaw of scram rods
• Pump cavitation
• Pump coast-down
• Opening of turbine bypass valve 

(6.96MPa)
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Calculation Model by NETFLOW++ Code
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Trigger of the Accident

P.S.W. Chan and A.R. Daster
Nuclear Science and Engineering,
103, 289-293 (1989).

• Positive scram

Andriushchenko, N.N. et al., 
Simulation of reactivity and neutron 
fields change, Int. Conf. of Nuclear 
Accident and the Future of Energy, 
Paris, France, (1991).
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Trigger of the Accident (cont.)
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Simulation from 1:19:00 to First Peak
Data acquired by SKALA
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Behavior of Steam Quality
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Void Characteristic
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Nuclear Characteristics
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Peak Power and its Reactivity
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Relationship between Peak Power
and Peak Positive Reactivity
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Just after the Accident
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Control Room and Corium beneath the Core
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Before earthquake (14:46) & After Tsunami
(15:45) at Fukushima-1 on 11 Mar. 2011
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Severe accident at Fukushima-1
After Tsunami

Stack
Suppression pool

DC power
Off-site 
power

ECCS

Seawater pumps

○

○

Cooling pump for suppression pool

原子炉
圧力容器

Containment 
vessel

Fuel pool

×Loss of off-
site power

Diesel 
generators

×

×
×

×

Operators injected water into the reactor
core by RCIC. After the loss-off-all-AC-
power, water injection was impossible. Damaged

by Tsunami

RCIC 
pump
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Hand calculation to estimate uncovery

• Assumption: Reactor diameter=4m, water level from top of 
fuel=4m

• Water inventory ≒ 50t
• Latent heat at 7MPa≒1500kJ/kg
• Initial heat generation rate of Unit-1（460,000ｋW)

≒460,000/0.3 ≒ 1,500,000kW (70% of heat is released to 
seawater）
Decay heat ratio at around 1000 sec.≒ ２%
Heat generation rate by decay heat≒
1500000×0.02=30,000kW

• Mass evaporated for 1000 sec. : M(kg)
M=30,000×1000÷1500

=20000kg=20t
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Real water level and detected water level

Ｖ

Ｖ

Low pressure
(Spent fuel pool)
Volume of steam expands  1600 
times of water at 0.1 MPa.

Ｖ

High pressure (Core)
Volume of steam 
expands  21 times of 
water at 7 MPa.

Ｃ
ｖ

燃料

燃料

Mochizuki, H. et al., Core coolability  of an ATR by 
heavy water moderator om situation beyo9nd design 
basis accidents, Nuclear Engineering and Design, 
144 (1993), pp293-303.

Experiment
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Natural circulation after the loss of AC power and 
sea  water pump

Secondary sodium

Primary
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IHX

Primary 
pump

Core

Air cooler
（AC)

Evaporator
(EV)

Turbine Generator

Feed water pump

Sea water 
cooler

Condenser
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pump

Super heater
(SH)

[1] H. Mochizuki, Plant Behavior of a Fast Breeder Reactor under Loss of AC Power for Long Period, Nuclear Engineering and Design, 245, 
(2012), pp.19-27.
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Station Blackout Event of “Monju”
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Station Blackout at 1000 sec.
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