

福島原発事故について Accident in Fukushima Daiichi NPP

Dr. N. Nakae JNES

2011年12月26日 茨城大学大学院 理工学研究科

本資料は、英国SERCO社、ベルギーSCK·CEN研究所、及び仏国CEAとの 技術会議において情報提供のみのためにINES(中江)が作成したものである。

Contents

- 1. Effect of the Earthquake and Tsunami on NPPs
- 2. Summary of the Accident with Units 1-4 at 1F
- 3. Why Severe Accident Occurred?
- 4. Status of 1F1-4 at present
- 5. Radioactive Material Released to the Sea and Discharged into the Atmosphere
- 6. Evacuation of Neighborhoods
- 7. INES Rating
- 8. Nuclear Energy Strategy in Japan
- 9. Lessons Learned From 1F Accident
- **10. Statement of AEC**

Epicenter of the Earthquake

- The earthquake was occurred at 14:46 on March 11, 2011 in Tohoku district where is northern part of Japan.
- Magnitude was 9.0 Mw.

JNES JNES

• Epicenter location is 38° 6" north latitude and 142° 51" east longitude, and the depth is 24 km.

source : www.tepco.co.jp

Tsunami After the Earthquake

- East coast of northern areas in main island of Japan was seriously damaged due to tsunami.
- As of 24 August, 15,729 peoples are dead and 4,539 people are missing.

source : www.tepco.co.jp

Nuclear Reactors Near Epicenter of the Earthquake

Location of the Nuclear Installations

JNES **Effect of the Earthquake and Tsunami on NPPs** • 11 NPPs were automatically shut down. • Onagawa Unit 1, 2, 3 • 1F Unit 1, 2, 3 • 2F Unit 1, 2, 3, 4 Tokai Daini After the automatic shut down, the units of 1-3 at Onagawa NPS, the units 1-4 at 2F have been cold shut down safely. However, the units 1-3 at 1F have been failed to get cold

shut down condition.

• 3 NPPs were under periodic inspection.

• 1F Unit 4, 5, 6

Spent fuels stored in the SFP at the units 5 and 6 have been cooled safely. However, those at <u>unit 4</u> have not been cooled.

source : www.meti.go.jp

Location of Fukushima Daiichi (1F) NPPs

JNES

Main Parameters of 1F NPPs

	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
Туре	BWR-3	BWR-4	BWR-4	BWR-4	BWR-4	BWR-5
Containment Vessel (CV) Model	Mark-1	Mark-1	Mark-1	Mark-1	Mark-1	Mark-2
Electric Output (MWe)	460	784	784	784	784	1100
Max. Pressure of RPV (MPa)	8.24	8.24	8.24	8.24	8.62	8.62
Max. Temperature of RPV (°C)	300	300	300	300	302	302
Max. Pressure of CV (MPa)	0.43	0.38	0.38	0.38	0.38	0.28
Max. Temperature of CV (°C)	140	140	140	140	138	171 (D/W) 105 (S/C)
Fuel Type Loaded in the Core	8x8, 9x9	9x9	9x9	9x9	9x9	9x9
No. of Fuel Assembly Loaded	400	548	548*		548	764
No. of Fuel Assembly in SFP	392	615	566	1535	994	940
Commercial Operation	03/1971	07/1974	03/1976	10/1978	04/1978	10/1979
No. of Emergency DG	2	2	2	2	2	3**

* Thirty two (32) fuel assemblies are MOX fuel.

****** One emergency DG is air-cooled.

source : Application document of license for establishment of NPP

Plant Status of 1F NPPs Just Before Accident

Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
in Operation	in Operation	in Operation	Refueling Outage	Refueling Outage	Refueling Outage
460MWe	784MWe	784MWe	0MWe	0MWe	0MWe
Spent Fuel Pool 1	Spent Fuel Pool 2	Spent Fuel Pool 3	Spent Fuel Pool 4	Spent Fuel Pool 5	Spent Fuel Pool 6
in normal Operation	in normal Operation	in normal Operation	All fuel assemblies in the R/C were transferred to SFP.	in normal Operation	in normal Operation

source : www.tepco.co.jp

Effects caused by the Earthquake and Tsunami

JNES

Summary of the Accident with Units 1-3 at 1F

	1F1	1F2	1F3
SBO	15:37 (Mar.11)	15:41 (Mar.11)	15:38 (Mar.11)
LOHS	same as above	same as above	same as above
Water Injection into Reactor Core	05:46 (Mar.12) freshwater	19:54 (Mar.14) seawater	13:12 (Mar.13) seawater
C/V Vent	14:30 (Mar.12)	try but fail	8:41 (Mar.13)
Hydrogen Explosion	15:36 (Mar.12)	after 6:00(Mar.15) at S/C	11:01 (Mar.14)
Fuel Melting	about 17:00 (Mar.11)	about 18:00 (Mar.14)	about 8:00 (Mar.13)
	100%	100%	50%

Causes of the Different Behavior in Units 1-3

	1F1	1F2	1F3
Hydrogen Explosion	15:36 (Mar.12)	after 6:00 (Mar.15) at S/C	11:01 (Mar.14)
Fuel Melting	about 17:00 (Mar.11) 100%	about 18:00 (Mar.14) 100%	about 8:00 (Mar.13) 50%
Kinds of ECCS	IC	RCIC	RCIC HPCI
Operational State of ECCS	Startup of IC at 14:52 Mar. 11	Startup of RCIC at 14:50 Mar. 11 Stop of RCIC at 13:25 Mar.14	Startup of RCIC at 15:05 Mar. 11 Stop of RCIC at 11:36 Mar. 12 Startup of HPCI at 12:35 Mar. 12 Stop of HPCI at 02:42 Mar. 13
Ventilation of R/B	not be functioned	blowout panel broken due to explosion at 1F3	not be functioned

Summary of the Accident with Unit 4 at 1F

	Spent Fuel Pool in 1F4		
		Spent fuel pool cooling system in 1F4 did not work due to SBO.	
SBO	15:38 (Mar.11)	Vaporization of SFP water occurred and water level decreased. Water may be supplied from the reactor core through cannel.	
Hydrogen Explosion	about 6:00 (Mar.15)	Hydrogen production is not taken in 1F4, and it may come from 1F3.	
Fuel Failure	Failure?	Fuel assemblies stored in the SFP were observed, also the activity of water in the pool was analyzed. Fuel failure may not be occurred.	

source : <u>www.tepco.co.jp</u>

source : <u>www.tepco.co.jp</u> and <u>www.digitalglobe.com</u>

Water Discharge by Concrete Pumping Vehicle

>JNES

source : <u>www.tepco.co.jp</u>

Why Severe Accident Occurred?

Direct Cause

JNES

- Tsunami continued by earthquake caused SBO and LOHS.
- SBO and LOHS are direct causes of severe accident.

Design and Construction

- The countermeasure against tsunami attack was not enough to prevent SBO and LOHS.
- There are flaws in the guideline of safety design, especially on SBO.

PSA and Stress Test

- PSA or PRA has been actively performed, but the scope is not enough to cover wide range of accident scenario.
- Stress test has not been done.

Mind and Education

- The occurrence of real severe accident is not in the right mind frame by persons concerned with nuclear engineering.
- The education of operators is not enough against protection of severe accident.

Status of 1F2 As of 24 August 2011

Release of Radioactive Materials to the Sea

Events	Results
Leakage from 1F2 (Apr. 2 - Apr. 6)	On April 2, it was discovered that highly contaminated water was flowing into the sea water through the crack on the lateral surface of the pit. Total discharged amount of the radioactive was assumed to be approximately 4.7x10 ¹⁵ Bq.
Discharge to the sea (Apr. 4 - Apr. 10)	In order to secure capability for highly contaminated water, TEPCO discharged low level radioactive water into sea water. Total discharged amount was presumed to be approximately 1.5x10 ¹¹ Bq.
Leakage from 1F3 (May 11)	On May 11, TEPCO confirmed the outflow from a pit near Channel of 1F3 into the sea. Total amount can be estimated to be 2.0x10 ¹³ Bq.

Distance Stress Stress

Amount of Radioactive Materials Discharged

	I-131	Cs-137
Amount of RM discharged to the atmosphere (Bq)	1.6x10 ¹⁷	1.5x10 ¹⁶

	Noble gases	Iodine	Other nuclides
Release Rate (%) at 1F1	100	1	less than 1
Release Rate (%) at 1F2	100	0.4-7	Te:0.4-3 Ce:0.3-6
Release Rate (%) at 1F3	100	0.4-0.8	0.3-0.6

analyzed by use of MELCOR code

Evacuation of Neighborhoods

JNES

INES Rating

NISA issued provisional INES ratings, based on "What is known" at the time.

Timing	INES Ratings	Criteria
March 11	Level 3 for 1F1, 2 and 3 Level 3 for 2F1, 2 and 4	Defense in Depth
March 12	Level 4 for 1F1	Radiological Barriers and Control
March 18	Level 5 for 1F1, 2 and 3 Level 3 for 1F4	Radiological Barriers and Control Defense in Depth
April 12	Level 7 for 1F NPS	People and Environment

Official rating will be done after cause and countermeasures are identified.

JNES

Current Status of NPP in Japan As of 25 August

EC	Plant	Status	EC	Plant	Status	EC	Plant	Status
	Tomari-1	PI		K-1	PI		Takahama-1	PI
Hokkaido EPCO	Tomari-2	PI		K-2	SD	VEDCO	Takahama-2	OP
LICO	Tomari-3	ОР		K-3	SD	KEFCU	Takahama-3	ОР
	Higashi-dori	SD	ТЕРСО	K-4	SD		Takahama-4	PI
Tohoku	Onagawa-1	SD		K-5	ОР	Chugoku	Shimane-1	PI
EPCO	Onagawa-2	SD		K-6	ОР	EPCO	Shimane-2	ОР
	Onagawa-3	SD		K-7	PI		Ikata-1	ОР
Hokuriku	Shika-1	SD		Hamaoka-1	DC	Shikoku FPCO	Ikata-2	OP
EPCO	Shika-2	PI		Hamaoka-2	DC	LICO	Ikata-3	PI
	1F-1	SD	Chubu FPCO	Hamaoka-3	PI		Genkai-1	ОР
	1 F-2	SD	EICO	Hamaoka-4	SD		Genkai-2	PI
	1 F-3	SD		Hamaoka-5	SD	Kyushu	Genkai-3	PI
	1F-4	SD		Mihama-1	PI	EPCO	Genkai-4	ОР
TERCO	1F-5	SD		Mihama-2	ОР		Sendai-1	PI
TEPCO	1 F-6	SD		Mihama-3	PI		Sendai-2	ОР
	2F-1	SD	КЕРСО	Ooi-1	PI		Tokai-1	DC
	2F-2	SD		Ooi-2	ОР	LI DC	Tokai-2	PI
	2F-3	SD		Ooi-3	PI	JAPC	Tsuruga-1	PI
	2F-4	SD		Ooi-4	PI		Tsuruga-2	SD

OP: Operation (13) PI: Periodic Inspection (20) SD: Shutdown (21) DC: Decommissioning (3)

JNES JNES

Lessons Learned From 1F Accident (1)

1. Appropriate DBAs

- Appropriate consideration for natural hazards by design
- Design basis tsunami height 5.7 m against 15 m of actual tsunami height

2. Robustness in responding to BDBAs such as SBO for long duration and LOHS

- Appropriate design philosophy to sustain safety function against common cause failures brought by natural hazards
 - > Only 1 air cooled DG, which is located on the ground level, was survived
 - All the sea water pumps were located slightly above the design tsunami height and they were with no protection against water
- Appropriate AM measures for both prevention and mitigation of severe accidents
 - > No AMs for SFP cooling and H₂ control in the R/B
 - No AMs training under severe conditions for multi-units under continuous aftershocks

Original statement of AEC (Fundamental Policy Concerning Budget Estimation of Nuclear in JFY of 2012) was published in Japanese and translated into English by JNES.

source : <u>www.aec.go.jp</u>

Contents

- 1. Radiation Exposure (engaged person)
- 2. Radiation Exposure (peripheral people)
- 3. Amount of Radioactive Materials Discharged
- 4. Integrated Dose at Reading Points
- 5. Road Map of Recovery Plan
- 6. Emergency Safety Precaution
- 7. Conducting Stress Tests
- 8. Careful Thinking of Nuclear Energy

Radiation Exposure (engaged person)

Dose limit	100 mSv→250 mSv				
	March	April	May		
Total number of engaged persons	3,538	3,254	4,772		
Average radiation dose (mSv)	23.1	4.2	1.85		
Number of the persons whose dose exceeds 100 mSv	111	0	0		
Number of the persons whose dose exceeds 250 mSv	6	0	0		

source : www.tepco.co.jp

Radiation Exposure (peripheral people)

Radiation dose level	no harmful effect
No. of screening people	219,743 persons
(As of 21 August 2011)	
Radiation dose level on	
childhood thyroid	no harmful effect
No. of screening infants	1080
(As of 30 March 2011)	

source :wwwcms.pref.fukushima.jp www.nsc.go.jp

Amount of Radioactive Materials Discharged

JNES

	Fukushima Daiichi NPS			
	NISA	NSC	Chernobyl	INII
I-131 (a)	1.3x10 ¹⁷	1.5x10 ¹⁷	1.8x10 ¹⁸	5.6x10 ¹¹
Cs-137	6.1x10 ¹⁵	1.2x10 ¹⁶	8.5x10 ¹⁶	negligible
Reduced Iodine (b)	2.4x10 ¹⁷	4.8x10 ¹⁷	3.4x10 ¹⁸	negligible
(a) + (b)	3.7x10 ¹⁷	6.3x10 ¹⁷	5.2x10 ¹⁸	5.6x10 ¹¹

source : Report of the Japanese Government to IAEA Ministerial Conference on Nuclear Safety T. Watarai, Y. Inoue, F. Masuda, J. of the Atomic Energy Society of Japan, Vol.32,No.4 (1990)

Integrated Dose at Reading Points

JNES

Road Map of Recovery Plan

Emergency Safety Precaution

- Nuclear and Industrial Safety Agency (NISA) called for the emergency safety precaution on 30 March, 2011.
- The emergency safety caution consists of the following six items.

<u>Implementing the emergency inspections of equipments and facilities</u> to ensure the readiness for tsunami induced emergencies.

Implementing a review of the Emergency Preparedness Plan and conducting drills with the assumption that all alternating current power sources, seawater cooling function and Spent Fuel Pool cooling function have been lost. Ensuring the alternative power sources that can supply necessary power in a timely manner when both on-site power and emergency power supply are lost. Preparing for the measures to recover heat removal function in a timely manner with the assumption of loss of seawater system facility or its function. Implementing the measures to supply coolant water to Spent Fuel Pools in timely manner when cooling function for the pools and usual on-site water supply to the pools are lost.

Implementing necessary measures taking into account the structural configuration of each NPS site

source :News Release from NISA on March 30, 2011

Conducting Stress Tests

	First Round Evaluation	Second Round Evaluation
	Natural Hazard	Natural Hazard
	Earthquake, Tsunami, Overlapping	Earthquake, Tsunami, Overlapping
Intended Events	Loss of Safety Functions	Loss of Safety Functions
	Electric Power Supply, Final Heat Sink,	Electric Power Supply, Final Heat Sink,
		Overlapping
	Severe Accident Management	Severe Accident Management
Contents	To evaluate safety margin for	To evaluate safety margin for
	hypothetical events (beyond	hypothetical events (beyond design
	design basis accident, BDBA)	basis accident, BDBA)
	To check if evaluation results are	To identify cliff edge for severe
	satisfied with acceptable values	damage of fuel
	To confirm that NPP has a	To examine measures to prevent
	certain level of safety margin	severe fuel damage
Remarks	Japan Original	Correspond to European Stress Test
	Apply to NPP under inspection	Apply to NPP under operation

Processing the Accident of 1F NPPs

(1) Radiation Exposure of General Public living in the Vicinity

Careful Follow-up of the Effect on Health of General Public Received Radiation Dose

Designing Criteria of Dose Limit for Severe Accident in Order to Control Radiation Exposure of the Workers and the People in the Surrounding Area Based on the Reporting by ICRP Explanation of the Background of the Criteria done by the Government

(2) Recovery of Environment Contamination

Assurance of the Period of Evacuation and Safety of the Environment when they come back again Returning Evacuated Peoples Back to Original Places as soon as possible Cleaning Contaminated Soil, Building, Plants and others up

(3) Treatment and Disposal of NPPs Damaged

Handling and Reprocessing of Fuels Stored in Damaged Core and SFP Decommissioning Damaged NPPs Including Environment Clean-up

source :N. Nakae, private communication

Diversion Stress

Safety Improvement of Existing NPPs

- Review of Guides of Safety Design, Safety Assessment, Site Evaluating, Severe Accident (SA), its related Accident Management (AM), Radiation Dose Limit, and Evacuation
- Review of Safety Design such as Water Proof of Components, Electric Power Supply, Multiple and Multiplicity of Safety Protection System, Monitoring of Plant Parameters, Seismic, and Tsunami
- Review of Safety Assessment such as External Events, especially Natural Hazard such as Earthquake and Tsunami
- Review of Site Evaluating in relation with Severe Accident (SA) in view point of Determining Source Term and Method of Evaluating Dose Effect on the Public and Environment
- Extraction of Systematic Fuel Failure Modes in SA and Taking into Account of Corresponding AM
- Reflection of the Result of Reviewing AM and Stress Test in Education and Training of Operators also in Checking and Testing Safety Protection System

Why Needs To Introduce Concept of Risk?

Gray zone might exist in safety licensing of nuclear facilities.

