

	原子力基礎工	.学部門 部門內連絡会議紹介用資料(様式) A	4 用紙 1 枚		-
自己紹介	(ふりがな)	おざわ まさき	生年月日(年令)	1950年9月1日 (58 字)	
	氏 名	小澤 正基	出身都道府県	山梨県甲府市	
	所属	原子力基礎工学研究部門、主任研究員、研究			
		主幹			
	専門分野	核燃料再処理、Pu 分離化学、分離変換工学、]		
		工業電気化学		CONTRACTOR AND	
	学位	工学博士(東京大学)1993年7月			
	主な所属学	電気化学会、日本原子力学会、日本化学会、			
	슾	日本溶媒抽出学会、水素エネルキー協会、日本希	100	36	
		土類学会、国際テクネチウムシンポシ゚ウム・Advisory		Sel	
		Committee 委員、 J.A. EC 及び J.E.A 査読委			
		員、J.R.NC編集委員			
	主な外部兼	「分離変換サイクル」研究専門委員会・委員(1993		1	
	職·委員	~)、(国)東京工業大学大学院理工学研究科		-	
		原子核工学専攻客員教授(2003~)、「核燃料			
		*イクルの物質利用」研究専門委員会委員・幹事			
		(2005~)、(独)科学技術振興機構 (JST) 原			
		子力領域主管(ブロダラムオフィサー)(2007~)			
	网络 把 把	1975 年 3 月山梨大学大学院工学研究科修了	(燃料電池電構	亜触媒の研究)、同	
		年4月旧動力炉・核燃料開発事業団 (PNC)入	社 (東海再処)	理工場配属)、1981	
		年5月~1982年6月旧西ドイフ・カールスルーエ原子核	友センター(IHCh)	留学、1986年 ~	
		1990 年 RETF 主分離工程の設計及び日米 F 再当	共研 TC、1994	~1998 年分離に関	
		する日仏協力 TC、1991 年担当役、1996 年主	研(PNC)、199	8年10月旧サイクル機	
		構 (JNC) 経営企画本部、2005 年分離変換工作	学 GL、 2006 年	《主研 (JAEA)。	
	これまでの	1975~1986:軽水炉燃料再処理技術開発(車	海再処理工場	主分離担当)	
	研究・業務概	1986~1990:高速炉燃料再处理技術開発 (PU	REX 法の Salt	-Free 研究、他)	
	夢	1990~1998:核種分離に関する研究開発 (TR	UEX 法研究、	(也)	
		1998~2000:実用化戦略調査研究の立ち上げ			
		2001~現在;分離·変換・利用工学研究 (Ad	vORIENT C)	vc1e)	
	これからの	長寿命核種、希少元素の分離・変換・利用に	関する「先進:	りエントサイクル」研究を	
	計画・抱負	推進する。東工大連携大学院教育及びJST・F	0 業務を通じ	、学生及び若手研	
		完者の指導・育成に務める。			
	趣味・特技	伊・トスカーナ料理、独・白ワイン、Alchemy、パレーボ	一が、社交ゲンフ	、 ゴカフ(数回/年)	
	その他	座右の銘;智謀如湧、先取先制。武田信是末裔	f(信玄弟、後(の松尾氏 (母方))、	1
		今枝真理(宇宙物理学者、幼馴染)、中沢新一(文化人類学者	f、甲府一高同級)、	
		中田英寿(小・中同学区、近所)			

	Half-life	Sellafield*	Purex**
	(y)	(TBq)	(TBq/GW _e y)
airborne liquid	12.33	222 1050	41 643
airborne liquid	5730	4.1	2.0 0.54
airborne	10.72	26000	12300
	28.5	600	11
	0.0958	150	
	0.175	150	
	2.13 × 10⁵	180	
	1.02	810	39
airborne	1.57 × 10 ⁷		0.006
liquid		0.074	39
airborne	0.022		0.0007
liquid			0.032
airborne	30.0		0.002
liquid		4090	13
	0.781	100	
	14.4	1800	
		11000 (kg)	
	airborne liquid airborne liquid airborne liquid airborne liquid airborne liquid airborne liquid	airborne 12.33 liquid 12.33 airborne 5730 liquid 28.5 airborne 10.72 28.5 0.0958 0.175 2.13 × 10 ⁵ 1.02 1.57 × 10 ⁷ liquid 1.57 × 10 ⁷ airborne 0.022 liquid 30.0 liquid 1.4.4	(y) (TBq) airborne 12.33 222 liquid 1050 airborne 5730 4.1 liquid 1050 airborne 10.72 26000 28.5 600 0.0958 150 2.13 × 10 ⁵ 150 2.13 × 10 ⁵ 180 1.02 810 airborne 1.57 × 10 ⁷ liquid 0.074 airborne 0.022 liquid 4090 0.781 100 14.4 1800

◆異常事象と想定事故	
● 怒在少化と計画再新	
* 初村肉皮と凹座位丁による記より	
プロセス化学に関連した事象例としては、 • 第3相界面クラッドの生成とその解消法 • α核種テーリング現象とその解決法 • Heavy Oilの生成とPu回収法 • ヒドラジンによる突沸現象とその解決法 • 高レベル廃液蒸発濃縮缶のフォーミング現象	
 〇想定事故の例(GE社の想定事故1967.11.16提出、エネ総研報告書(昭和58年5月)より) 	
• 溶解液貯槽での臨界事故	
 高放射性廃液蒸発缶の爆発(Red Oil) 	
 イオン交換樹脂の火災 	
 溶媒火災 	
• アスファルト固化物の火災	
 ヨウ素反応器からのヨウ素放出 	
 プルトニウム蒸発缶の爆発(Red Oil) 	14

(1) (2) (3) 湿式 沈殿法 <mark>溶媒抽出法</mark> × × 有機イオン交換法 × ×	(4) ×	(5) (6) × ×	(7)	(8)	(9)	(10)	(11)
湿式 沈殿法 <mark>溶媒抽出法</mark> × × 有機イオン交換法 × ×	×	× ×					
沈殿法 <mark>溶媒抽出法 × ×</mark> 有機イオン交換法 × ×	×	× ×					
<mark>溶媒抽出法</mark> × × 有機イオン交換法 × ×	×			×	(×)	×	×
有機イオン交換法 × × ×		× ×	×	×	×	(×)°	×
	(×)	×		(×)	×		
無機イオン交換法 × ×	(×)	× (×)		(×)	×	×	
乾式							
ゾーンメルティング法 ×	×	×				×	
溶融塩法 (高温冶金法) ×		×			×		
フッ化物揮発法 (×) ×	×	×				×	

			■SF [:]	を"鉱脈	毛"とみ	そると
元素	鉱石中の	軽水炉使用浇	斥燃料中	FBR使用源	昏燃料中	H + + + 2
名	宫有卒 (ppm)	含有率(ppm)	比*1(-)	含有率 (ppm)	比*1(-)	備 考 * 4
Se	(12 ~ 92)	50~98	1.4	140	7.1	鉱石中の含有率は、ロシアUGMK社の 2004年銅生産実績と平均的な銅品位1 ~8%より算定
Мо	140	4,021~ 6,059	36	8,966	84	モンゴルのコルデネット鉱山実績
Rh	(0.4 ~ 0.6)	578 ~ 949	1,527	2,543	6,652	主な鉱山ではPGM生産量の1割程度を ロジウムが占めるため、PGM品位の 1/10と仮定
Pd	2.4~7.4	1,900~ 4,150	617	6,988	1426	カナダのノース・アメリカン・パラジウム 社実績
Ag	46~201	102~251	1.4	715	5.8	アイルランドGalmony鉱山、コンゴ Dikulushi鉱山の実績
Te	(3.6 ~ 29)	634~842	45	1,840	113	鉱石中の含有率は、ロシアUGMK社の 2004年銅生産実績と平均的な銅品位1 ~8%より算定
* * 月	: 1:鉱石中の含 : 2: 鉱石中の含 !)に基づく。	有率に対する使用済 す率、備考欄の想な	・ ・「燃料の含す をなどは、石	「率の比を、それ 「油天然ガス・金」	.ぞれの中間 属鉱物資源	値にて算出。 機構の「世界の鉱業の趨勢 2005」(平成17年8 21

■NRMの放射化学特性

FBR MOX, Inner core, 150GWd/t, cooled 5 years

Ru, Rh ; Short-lived FP

After 40 years stockpile, radio-activity of Ru will become at below than exemption level (BSS). By element separation of Pd/Ru, stable Ru and pure ¹⁰⁶Pd isotope will be obtained.

After 80 years stockpile, radio-activity of Rh will become at below than exemption level (NRPB). By element separation of Rh/Ru, stable pure ¹⁰³Rh and ¹⁰²Ru isotopes will be obtained.

Pd, Tc ; Long-lived FP

Low radio-toxicity (e.g., Exemption Level $\geq 10^{4}$ Bq/g) ⁹⁹Tc:10⁴(BSS) ¹⁰⁷Pd:10⁵(NRPB)

La, Nd , Ru*, In*, Pr*, Gd*, Tb* (*after 50 years) ; Very low radio-active FP

Less than 0.1Bq/g*. Note that radio-active 11 spa water of Jachmov / Czech for cure is 10.5Bq 222Rn/ml.

Seem to become highly strategic and important resources in the forefront industries.

Cm, Cs-Ba, Sr-Y, Rh, Eu, Cf;

High Radiation & Exothermicity (*e.g.*, >0.1W/g) 137 Cs, as instead of 60 Co

Mo, Dy, Er, Yb ; Stable FP

Would be of great value. Higher order isotopic abundance of FBR Mo would be beneficial for production of ${}^{99}Mo(\rightarrow {}^{99m}Tc)$.

′ Pdの ′ Rhの ′ Re(T)CEE効果 → <u>大;Ru</u> 、中;T()CEE効果 → <u>大;Ru、Re、T</u> c?)及びRuにはCFE効果は	c*、小 ; R ⁱ <u>Fc</u> tない。 Pi	e *ロシアKl d.Rh間(は競	RI 共同研究 5争的	データ(硝酸系	2)
				Reduction	Ratio (%)	
Run	RMFP	Pd	Ru	Rh	Re	Tc
1	Pd	97.8	-		_	_
2	Ru Bh		17.0	90.2	_	_
4	Re	<u> </u>	_		13.2	_
5	Tc		-		_	57.5
6	Pd-Ru	>99	>99		_	_
7	Pd-Rh	99.1		98.9	_	-
8	Pd-Re	99.1			17.6	_
9	Ru–Rh		99.2	93.5	—	—
10	Ru-Re		6.8	—	11.3	-
11	Rh-Re		_	92.2	41.6	
12	Rh-Tc		_	>99	_	99.7
13	Pd-Ru-Rh-Re(3.5:4:1:0.5)	>99	83.3	>99	91.4	_
14	Pd-Ru-Rh-Tc(3.5:4:1:0.5)	>99	86.9	>99	_	68.9

	■N 表-1 動力炉ょり発生	RMの ^{」する然料中}	利用(過去0		王例)	VL-251	: b引用)	
元素あるいは RI	可能性のある用途	半减期(年)	比出力: (フ=ト/g)	\$* \$* よその含有量 2 5000 MWD/	(g/ton) tの場合	見積り (\$/t使用)	価格 斉み燃料)	+数 10' MWD	(×10°) の場合
Kr - 8 5	105.94-98 08 0 . 10-0-140 MG	104	0.5.4		7	1.7	0.0		
Sr - 90	14.75 B 1075	2.8	095	4 1	;	8	22		
Te-99	副食材料, 会会材	21 × 1 0*		. 62	8	6	28		
Rh	工業。電気および装飾関係	* *		` 33	7	6	74		
Ru	工業からびに常気関係	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ru ~ 106}-	1.7.0	7	3	54		
Pd	工業。電気をよび結婚関係	<u>安</u> 定(干		97		2	4 4		
Xe	AS #4 58 68			. 398	7	1-1			
Cs~137	新·255。 大/201 - 202 - 255	30	042	3,58		, i	5.0	123	
Ce-144	熱潮, 日初潮	078	25.6	24	1		6.0	12.3	
Pm = 1 4 7	66.399. 56.9.1 a0.399	26	0.33	24	â	2	35	1	
1 -238	2日前小田	45 × 1 0*	7.33	89~1	~	3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
U -236	Nn-237の標約	24×107		3.97	7	360	7 0		
Nn-237	Pu-238の標約	22 2 1 0		31	6	6.3	20		
Am = 2 4 1	制御(((m-242の種位))	4 6 9	0.1		e	3.0			
m 242	熱所(地本) プロー238 トナエ)	1620	120	2	2	2,0	50	1 - F	
Am-243	Cm-244の標的	7650		8	7	391	20	1 - C	
Cm - 244	24. 75	176	28.	. 2	2 .	198	0 0		
Pu - 238	194 WE	90	0.5.6		-	1 3 4	5.0		
Pu - 239	核合型性物質	24 × 1 04	0.00	545	3	. 491	0 0		
Ru = 240	現分物(Pu-241の原料)	68 1 03		1.6.1	7	7 5	9 6		
Pu = 241	核分裂性物(#Am-241の原料)	1.3		1 4 1	2	240	00		
Pu – 242	Am-243の標的	3.8×10 ⁸		38	6	150	50		
				表-2 地球上K	おけるRIの	エネルギー利用	1		
		_	出力レベル	使用するRI	吃用	0 分 野	応用の	建定基準	
			Microwatta 100 ~ 1,000m W	Pu-238 Pu-238, Sr-90,	心臓のペー 生態学的素 海洋学的素 ケーブル月	スメーカー。 教 美 増内器。	長寿命; 雪 安全性 価格, 取り 信頼性, 安	戦性。 鉄いの容易さ。 全性	
				Pm-147	水中兵器				
			10 ~ 200watts	5 r-90	御侯房。		価格, 長夫	· · · · · · · · · · · · · · · · · · ·	
	出典・				マイクロヨ	自動中継所,	信奴性,当	全性	
					海洋学的发	実観測と計算			
	PNC1-7099(1970)		1 - 10 KW	0.000	N K o k H		15 48 18 18		
	BNIMI -25(1065)		1 ~ 10 KW	00.00,	10 10 2 9	. AS 100 ,	an en , 12 6	m,	
	DIAVE-20(1303)			Sr-90,	「保険探鉱と	调查,	安全性		
				Ce-144	軍用通信				

Element Is	sotope					-/						
		Price(\$/g), (A)	Price(¥/g) 27th Feb.,2003		Amount (g/tHM) (B)	Abun dance	Rad. or Stable	$ au_{1/2}$	Solubilit y (C)	RR by CEE (D)	Property of is in the spe fuel(\$/tH A*B*C*	otopes ent M) D
	Tc98	3.00E+10		est.	2.66E-02	0	rad. β γ	$4.2 \times 10^{6} v$				
Тс	Тс99	<u>ca</u> .100			1.09E+03	100	rad.active [2.1×10 ⁵ y	0.8	0.9	LLFP 7.	85E+04
	Ru99	39,040			2.55E-02	0						-
	Ru100	43,170			1.38E+02	3.3					3.1	75E+06
P., .	Ru101	35,050			1.18E+03	28.6			0.7	0.9	2.0	51E+07
	Ru102	20,410			1.52E+03	36.4			0.7	0.9	1.9	95E+07
	Ru104	27,300			1.32E+03	31.6					2.2	27E+07
1	Ru106				1.47E+01	0.4	rad.active	372.6d				
	Rh102				4.39E-03	0						
Rh _	Rh103	29			1.28E+03	100			0.8	0.99	2.9	94E+04
	Rh106	62.000			1.38E-05	0	rad.active	29.80s				CAT LOC
	Pd104	63,800			1.71E+02	5					8.0	54E+06
	Pd105				9.83E+02	28.0						
Pd	Pd106				1.07E+03	31	1 1 1	6	0.8	0.99	LLED	
	Pd107				5.6/E+02	16.4	rad.active	7×10~y			LLFP	
	Pd108	67.000			5.20E+02	15					1	205.06
	Pd110	67,090			1.37E+02	4					/	28E+06
	Se / 6				3.25E-02	2.7						
Ⅰ ⊢	Se//				1.80	2.7						
Se	5678				3.37	12.5	and a stirue (6.104	0.8	0.9	LLED	
	Se/9				8.37	12.3	rad.active	6×10 y			LLFP	
I –	5680				1.67E+01	24.4						
· · · · ·	Te122	76 850			3.60E+01	52.6						
	Te122	140,000		ant	5.27E.02	0	radioanti	1.2.1013				
	T-124	20,220		est.	3.27E-02	0	radioactive	1.3×10 y				
Ta	Te124	29,230			1.10E+00	20			0.8	0.0	2.0	26E±05
10	Te125	8 950			$4.02E\pm00$	2.8			0.8	0.9	2.0	301-103
	Te128	4 340			2 25E+02	25.1					7 (03E+05
	Te130	4 490			6.40E+02	71.4	radioactive	$2.4 \times 10^{21} v$			LLEP 2	09E+06
TI	11224	61 800			6.04E+01	/1.4	radioactive	454×10 ⁵				00100
4.9	0234	01,800	20.16		0.942+01		radioactive	.454×10 y				-
Au	ŀ	10	20.16									
Ru	ŀ	10	1,435									
Rh N	Natural		1									
Pd	·····		980									
Pt		12	2.756									40
Diamond		28,000	1,126,514/ct									-48

表 A-6 内部	被ばく線量換算係数(翌	を入・経口)	and the second
単位	(μS	v/Bq)	
核種	吸入	経口	
H-3	2.6E-05	1.7E-05	
C-14	5.6E-04	5.6E-04	
Cl-36	5.5E-03	8.2E-04	
Ca-41	3.5E-04	3.3E-04	
Mn-54	1.7E-03	7.3E-04	
Fe-55	6.9E-04	1.6E-04	
Co-60	4.1E-02	7.0E-03	
Ni-59	3.6E-04	5.4E-05	
Ni-63	8.4E-04	1.5E-04	
Zn-65	5.0E-03	3.9E-03	
Sr-90	3.4E-01	3.6E-02	
Nb-94	9.0E-02	1.4E-03	
Tc-99	2.0E-03	3.4E-04	
I-129	4.7E-02	7.4E-02	
Cs-134	1.4E-02	2.0E-02	
Cs-137	8.7E-03	1.4E-02	
Eu-152	5.9E-02	1.6E-03	
Eu-154	7.0E-02	2.5E-03	
Pu-239	1.2E+02	9.7E-01	
Am-241	1.2E+02	1.0E+00	